5
         
 
4
3
2
1
 

论 文 分 类 推 荐

本栏目按不同主题将本刊近年来发表的相关论文进行了分类,以便于读者查阅、引用 (分类不一定完全准确,仅供参考)

本刊2012年创刊以来发表的所有论文均可以在 SciOpen 网站免费下载


热障涂层、环境障涂层及其他保护性涂层


  1. F.H. Cheng, F.N. Zhang, Y.F. Liu, et al. Ti4+-incorporated fluorite-structured high-entropy oxide (Ce,Hf,Y,Pr,Gd)O2-δ: Optimizing preparation and CMAS corrosion behavior. Journal of Advanced Ceramics, 2022, 11 (11): 1801-1814

  2. C.K. Qu, L. Chen, L. Lv, et al, Low thermal conductivity and anisotropic thermal expansion of ferroelastic (Gd1-xYx)TaO4 ceramics. Journal of Advanced Ceramics, 2022, 11 (11): 1696-1713

  3. Y.C. Liu, K.L. Chu, Y. Zhou, et al. Discovery of orthorhombic perovskite oxides with low thermal conductivity by first-principles calculations, Journal of Advanced Ceramics, 2022, 11 (10): 1596-1603

  4. Z.Y. Wei , G.H. Meng, L. Chen, et al. Progress in ceramic materials and structure design toward advanced thermal barrier coatings, Journal of Advanced Ceramics, 2022,11 (7): 985-1068

  5. K.L. Wang, J.P. Zhu, H.L. Wang, et al. Air plasma-sprayed high-entropy (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 coating with high thermal protection performance, Journal of Advanced Ceramics, 2022, 11 (10): 1571-1582

  6. Y. Han, P.A. Zong, M.Z. Huang, et al. In-situ synthesis of gadolinium niobate quasi-binary composites with balanced mechanical and thermal properties for thermal barrier coatings, Journal of Advanced Ceramics, 2022, 11 (9): 1445-1456

  7. Z.L. Chen, Z.L Tian, L.Y. Zheng, et al. (Ho0.25Lu0.25Yb0.25Eu0.25)2SiO5 high-entropy ceramic with low thermal conductivity, tunable thermal expansion coefficient, and excellent resistance to CMAS corrosion, Journal of Advanced Ceramics, 2022, 11 (8): 1279-1293

  8. X.L. Wang, Y. Yang, S.T. Jia, et al. In-situ synthesis, microstructure, and properties of NbB2-NbC-Al2O3 composite coatings by plasma spraying, Journal of Advanced Ceramics, 2022, 11 (8): 1263-1278

  9. J.T. Zhu, M.Y. Wei, J. Xu, et al. Influence of order-disorder transition on the mechanical and thermophysical properties of A2B2O7 high-entropy ceramics, Journal of Advanced Ceramics, 2022, 11 (8): 1222-1234

  10. X.F. Zhang, M. Li, A. Zhang, et al. Al-modification for PS-PVD 7YSZ TBCs to improve particle erosion and thermal cycle performances, Journal of Advanced Ceramics, 2022,11 (7): 1093-1103

  11. D.B. Liu, B.L. Shi, L.Y. Geng, et al. High-entropy rare-earth zirconate ceramics with low thermal conductivity for advanced thermal-barrier coatings. Journal of Advanced Ceramics, 2022,11 (6) : 961-973

  12. L. Guo, G. Li, J. Wu, et al. Effects of pellet surface roughness and pre-oxidation temperature on CMAS corrosion behavior of Ti2AlC. Journal of Advanced Ceramics, 2022,11 (6) : 945-960

  13. Y. Xue, X.Q. Zhao, Y.L. An, High-entropy (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Ce2O7: A potential thermal barrier material with improved thermo-physical properties, Journal of Advanced Ceramics, 2022, 11 (4): 615-628.

  14. L. Chen, B.H. Li, J. Guo, et al. High-entropy perovskite RETa3O9 ceramics for high-temperature environmental/thermal barrier coatings, Journal of Advanced Ceramics, 2022, 11 (4): 556-569.

  15. L. Guo, B.W. Li, Y.X. Cheng, et al. Composition optimization, high-temperature stability, and thermal cycling performance of Sc-doped Gd2Zr2O7 thermal barrier coatings: Theoretical and experimental studies, Journal of Advanced Ceramics, 2022, 11 (3): 454-469.

  16. M.Q. Dai, X.M. Song, C.C. Lin, et al. Investigation of microstructure changes in Al2O3-YSZ coatings and YSZ coatings and their effect on thermal cycle life, Journal of Advanced Ceramics, 2022, 11 (2): 345-353.

  17. L. Dong, M.J. Liu, X.F. Zhang, et al. Pressure infiltration of molten aluminum for densification of environmental barrier coatings, Journal of Advanced Ceramics, 2022, 11 (1): 145-157.

  18. Y. Dong, K. Ren, Q.K. Wang, et al. Interaction of multicomponent disilicate (Yb0.2Y0.2Lu0.2Sc0.2Gd0.2)2Si2O7 with molten calcia-magnesia-aluminosilicate, Journal of Advanced Ceramics, 2022, 11 (1): 66-74.

  19. Y.H. Wang, Z. Ma, L. Liu, et al. Reaction products of Sm2Zr2O7 with calcium-magnesium- aluminum-silicate (CMAS) and their evolution, Journal of Advanced Ceramics, 2021, 10 (6): 1389-1397.

  20. M.L. Zhang, X.R. Ren, M.C. Zhang, Preparation of ZrB2-MoSi2 high oxygen resistant coating using nonequilibrium state powders by self-propagating high-temperature synthesis, Journal of Advanced Ceramics, 2021, 10 (5): 1011-1024.

  21. Y.N. Sun, H.M. Xiang, F.Z. Dai, et al. Preparation and properties of CMAS resistant bixbyite structured high-entropy oxides RE2O3 (RE = Sm, Eu, Er, Lu, Y, and Yb): Promising environmental barrier coating materials for Al2O3f/Al2O3 composites, Journal of Advanced Ceramics, 2021, 10 (3): 596-613.

  22. D.X. Li, P. Jiang, R.H. Gao, et al. Experimental and numerical investigation on the thermal and mechanical behaviours of thermal barrier coatings exposed to CMAS corrosion, Journal of Advanced Ceramics, 2021, 10 (3): 551-564.

  23. C.G. Zhang, Y. Fan, J.L. Zhao, et al. Corrosion resistance of non-stoichiometric gadolinium zirconate fabricated by laser-enhanced chemical vapor deposition, Journal of Advanced Ceramics, 2021, 10 (3): 520-528.

  24. L. Guo, G. Li, Z.L. Gan, Effects of surface roughness on CMAS corrosion behavior for thermal barrier coating applications, Journal of Advanced Ceramics, 2021, 10 (3): 472-481.

  25. T. Schlech, S. Horn, C. Wijayawardhana, et al. Experimental and FEM based investigation of the influence of the deposition temperature on the mechanical properties of SiC coatings, Journal of Advanced Ceramics, 2021, 10 (1): 139-151.

 

   
1 京公网安备 11010802037371号     京ICP备05082739号