5
         
 
4
3
2
1
 

论 文 分 类 推 荐

本栏目按不同主题将本刊近年来发表的相关论文进行了分类,以便于读者查阅、引用 (分类不一定完全准确,仅供参考)

本刊2012年创刊以来发表的所有论文均可以在 SciOpen 网站免费下载


电池材料 (固体电解质、电极等)


  1. Y. Zhang, L.F. Zhao, Z.P. Ye, et al. Sol–gel approach to low-temperature synthesis of single-phase metastable La2Ga3O7.5 melilite with enhanced grain-boundary oxide ionic conductivity via a kinetically favorable mechanism, Journal of Advanced Ceramics, 2022, 11 (10): 1613-1625

  2. C. Zhang, X.C. Hu, Z.W. Nie, et al. High-performance Ta-doped Li7La3Zr2O12 garnet oxides with AlN additive, Journal of Advanced Ceramics, 2022, 11 (10): 1530-1541

  3. D.Y. Xiong, S.A. Rasaki, Y.P. Li, et al, Enhanced cathodic activity by tantalum inclusion at B-site of La0.6Sr0.4Co0.4Fe0.6O3 based on structural property tailored via camphor-assisted solid-state reaction, Journal of Advanced Ceramics, 2022, 11 (8): 1330-1342

  4. I.A. Zvonareva, A.K. Mineeve, N.A. Tarasova, et al. High-temperature transport properties of BaSn1-xScxO3-δ ceramic materials as promising electrolytes for protonic ceramic fuel cells, Journal of Advanced Ceramics, 2022, 11 (7): 1131-1143

  5. K. Yuan, T.Z. Tu, C. Shen, et al. Self-ball milling strategy to construct high-entropy oxide coated LiNi0.8Co0.1Mn0.1O2 with enhanced electrochemical performance, Journal of Advanced Ceramics, 2022,11 (6) : 882-892

  6. X.Y. Ji, Y.R. Zhang, M.X. Cao, et al. Advanced inorganic/polymer hybrid electrolytes for all-solid-state lithium batteries, Journal of Advanced Ceramics, 2022,11 (6): 835-861

  7. Y.S. Xu, X. Xu, L. Bi, A high-entropy spinel ceramic oxide as the cathode for proton-conducting solid oxide fuel cells, Journal of Advanced Ceramics, 2022,11 (5) : 794-804.

  8. M. Guo, Y.F. Liu, F.N. Zhang, et al. Inactive Al3+-doped La(CoCrFeMnNiAlx)1/(5+x)O3 high-entropy perovskite oxides as high performance supercapacitor electrodes, Journal of Advanced Ceramics, 2022,11 (5) : 742-753.

  9. Melesevic, A. Radojkovic, M. Zunic, et al. Evaluation of stability and functionality of BaCe1-xInxO3-δ electrolyte in a wider range of indium concentration, Journal of Advanced Ceramics, 2022, 11 (3): 443-453.

  10. C.Y. Liu, Y. Qiu, Y.L. Liu, et al. Novel 3D grid porous Li4Ti5O12 thick electrodes fabricated by 3D printing for high performance lithium-ion batteries, Journal of Advanced Ceramics, 2022, 11 (2): 295-307.

  11. S.X. Yan, S.H. Luo, L. Yang, et al. Novel P2-type layered medium-entropy ceramics oxide as cathode material for sodium-ion batteries, Journal of Advanced Ceramics, 2022, 11 (1): 158-171.

  12. P.F. Wu, B.Y. Shi, H.B. Tu, et al. Pomegranate-type Si/C anode with SiC taped, well-dispersed tiny Si particles for lithium-ion batteries, Journal of Advanced Ceramics, 2021, 10 (5): 1129-1139.

  13. Y.H. Ling, T.M. Guo, Y.Y. Guo, et al. New two-layer Ruddlesden-Popper cathode materials for protonic ceramics fuel cells, Journal of Advanced Ceramics, 2021, 10 (5): 1052-1060.

  14. P.M. Gonzalez Puente, S.B. Song, et al. Garnet-type solid electrolyte: Advances of ionic transport performance and its application in all-solid-state batteries, Journal of Advanced Ceramics, 2021, 10 (5): 933-972.

  15. L.M. Liu, X.X. Huang, Z.Y. Wei, et al. Solvents adjusted pure phase CoCO3 as anodes for high cycle stability, Journal of Advanced Ceramics, 2021, 10 (3): 509-519.

  16. X. Wu, X.H. Liang, X.F. Zhang, et al. Structural evolution of plasma sprayed amorphous Li4Ti5O12 electrode and ceramic/polymer composite electrolyte during electrochemical cycle of quasi-solid-state lithium battery, Journal of Advanced Ceramics, 2021, 10 (2): 347-354.

  17. P.Z. Li, W. Yang, C.J. Tian, et al. Electrochemical performance of La2NiO4+δ-Ce0.55La0.45O2-δ as a promising bifunctional oxygen electrode for reversible solid oxide cells, Journal of Advanced Ceramics, 2021, 10 (2): 328-337.

  18. Z.Q. Zhu, Z.Y. Gong, P. Qu, et al. Additive manufacturing of thin electrolyte layers via inkjet printing of highly-stable ceramic inks, Journal of Advanced Ceramics, 2021, 10 (2): 279-290.


 

   
1 京公网安备 11010802037371号     京ICP备05082739号